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Abstract
We study the singlet–triplet Anderson model (STAM) in which a configuration with a doublet is
hybridized with another containing a singlet and a triplet, as a minimal model to describe
two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The
model has a quantum phase transition which separates regions of a doublet and a singlet ground
state. The limits of integer valence of the STAM (which include a model similar to the
underscreened spin-1 Kondo model) are derived and used to predict the behavior of the
conductance through the system on both sides of the transition, where it jumps abruptly. At a
special quantum critical line, the STAM can be mapped to an infinite-U ordinary Anderson
model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the
STAM as a function of those of the OAM at the transition. Using the non-crossing
approximation (NCA), we calculate the spectral densities and conductance through the system
as a function of temperature and bias voltage, and determine the changes that take place at the
quantum phase transition. The separation of the spectral density into a singlet and a triplet part
allows us to shed light on the underlying physics and to explain a shoulder observed recently in
the zero bias conductance as a function of temperature in transport measurements through a
single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks
observed in nonequilibrium transport in these experiments is also explained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For nearly four decades, the Anderson model for magnetic
impurities has been the subject of intense study in condensed
matter physics. Its extension to the lattice (or even the
impurity model above the so-called coherence temperature)
describes, among others, intermediate valence systems [1, 2]
and heavy fermions [3, 4]. A bosonic version of it has
been used to describe semiconductor microcavities with strong
light–matter interaction [5, 6]. The Kondo model is derived
through a canonical transformation as an integer valence limit
of the Anderson model [7]. The Kondo effect is also one
of the most relevant subjects in many-body theory [4]. A

strong resurgence of interest in these many-body phenomena
has taken place in recent years with experimental results in
nanoscale systems. Progress in nanotechnology has made
it possible to construct nanodevices in which the Kondo
physics is clearly displayed, for example in systems with
one quantum dot (QD) [8–10], which constitute ideal systems
with a single magnetic impurity in which several parameters
can be tuned. Scanning tunneling spectroscopy has made
it possible to probe the local density of states near a single
impurity and Fano antiresonances have been observed for
several magnetic impurities on metal surfaces [11–14]. These
antiresonances observed in the differential conductance, are
a consequence of a dip in the spectral density of conduction
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states caused by the Kondo effect [15–17]. Furthermore,
corrals built on the (111) surface of noble metals or Cu have
been used to project the spectral features of the Fano–Kondo
antiresonance to remote places [11, 17]. The observed Fano
lineshapes for one magnetic impurity on these surfaces have
been reproduced by many-body calculations [15–21]. The
essential physics involved in these nanoscopic systems is well
understood in terms of the ordinary Anderson model (OAM).
In the following, we denote by OAM the simplest version of
the model, with infinite on-site Coulomb repulsion U , in which
a configuration with a doublet is hybridized with a singlet.
In particular, for systems with one QD with an odd number
of electrons, the conductance at zero bias is increased below
a characteristic Kondo temperature TK as a consequence of
the Kondo effect. This is a usual feature of single-electron
transistors built with semiconductor QDs [8–10] or single
molecules [22].

In a QD with an even number of electrons, in many
cases, the ground state is a singlet with all dot levels either
doubly occupied with both spin projections or empty. In this
case, as a gate voltage of either sign is applied, the system
goes to a configuration with an odd number of electrons and
a doublet ground state. Therefore, the OAM still describes
the system at intermediate and even electronic occupation.
However, in other cases with an even number of electrons,
due to the strong ferromagnetic (Hund) coupling [23], it is
energetically favorable to promote one electron of the occupied
level of the highest energy to the next unoccupied level
building a triplet state. When this triplet is well below the
other states, the system can be described by the underscreened
spin-1 Kondo model, which is exactly solvable by a Bethe
ansatz [24, 25]. As a consequence, there is a partial screening
of the spin 1 that explains the zero bias Kondo peak observed
experimentally in this situation [26–28]. In fact, in real QDs
one expects a second screening channel to be active below
a characteristic temperature T ∗ suppressing the conductance
for bias voltage V or temperature T such that eV , kT <

kT ∗ [29, 30]. However, comparison with experiment suggests
that T ∗ (which depends exponentially on a small coupling
constant [30]) is very small, so that one can assume an effective
one-channel model for practical purposes [30, 31]. When a
gate voltage induces a change in the occupation in such a
way that the lowest state of the isolated dot changes from a
triplet to a doublet (or conversely), the appropriate model has
the form of a generalized Anderson model which has been
used to describe valence fluctuation between two magnetic
configurations [32–34]. Its impurity version was also solved
with a Bethe ansatz [2, 35, 36]. In contrast to the OAM (which
has a singlet ground state), its ground state is a doublet.

The physical picture becomes more complex and also
more interesting when singlet and triplet states of the
configuration with even number of electrons in the dot lie
close in energy and neither one of them can be neglected (see
figure 1). We call the model that describes the fluctuations
between these states and an odd-particle doublet, the singlet–
triplet Anderson model (STAM). Again, rigorous results
for this model can be borrowed from previous studies of
intermediate valence systems. Allub and Aligia proposed the

Figure 1. Scheme of the lowest lying levels of the STAM: a doublet
(a singlet and a triplet) for the configuration with an odd (even)
number of particles n.

model to describe the low energy physics of Tm impurity
fluctuation between the 4f12 and 4f13 configurations in a cubic
crystal field [37]. Using the numerical renormalization group
(NRG) the authors found a singlet or a doublet ground state,
depending on the parameters. Therefore, the system has a
quantum phase transition when the wavefunction is forced
to evolve continuously between these two competing ground
states.

Quantum phase transitions are another topic of great
interest in condensed matter physics [38]. Recently, Roch et al
performed several transport measurements through a C60 QD
with even occupancy inserted in a nanoscale constriction [39].
They were able to tune the parameters in such a way
that a clear manifestation of the above-mentioned quantum
phase transition was observed. The differential conductance
dI/dV as a function of temperature and bias voltage has
been measured on both sides of the transition [39]. On
the singlet side, a dip in the conductance at V = 0 is
observed in agreement with theoretical expectations on models
similar to the STAM [31, 40, 41] as well as nonequilibrium
measurements performed in carbon nanotubes [41]. On the
other side of the transition, dI/dV as a function of V shows
a structure with three peaks that has not been quantitatively
explained yet. We have obtained recently a symmetric three-
peak structure [42], but the source of the observed asymmetry
remains to be investigated. As the temperature T is decreased,
the zero bias conductance G(T ) first increases, then it shows
a shoulder or a plateau and then increases again. The authors
state that this behavior is not understood and speculate that the
increase at the lowest temperatures might be due to the opening
of another parallel transport mode [39]. This plateau in the
conductance was presented by us in a short paper [42].

Recently, a comprehensive study of the physics of a two-
level quantum dot, using NRG, has been presented [31]. This
model contains the STAM as a limiting case, when higher
energy states can be neglected. The advantage of the STAM
is that it has fewer parameters and is the minimal model to
describe the quantum phase transition when charge fluctuations
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are allowed. An important result of the work of Logan et al is
the derivation of an extended Friedel–Luttinger sum rule which
relates the occupation of the dot to the zero bias conductance
at very small temperatures [31]. However, in this work, results
at finite bias were obtained using approximate expressions and
the equilibrium spectral density and (as in previous works) the
results do not provide an interpretation of the above-mentioned
experimental findings of Roch et al. Because of the difficulties
in extending robust techniques to the nonequilibrium case
(discussed, for example, in [42] and [43]), very few studies
of this problem for finite bias voltage exist [41, 42].

In this paper, we present several analytical results which
shed light on the behavior of the conductance near the quantum
phase transition. We also present numerical results obtained
using the non-crossing approximation (NCA), which provide
an interpretation of the recent experiments of equilibrium and
nonequilibrium conductance in C60 QDs near the quantum
phase transition [39].

In section 2 we explain the model and its application to
multilevel QDs. In section 3 we derive the integer valence
limits of the model by means of canonical transformations, and
use known results of the ensuing effective models to predict
the behavior of the conductance at both sides of the quantum
phase transition. The self-consistent system of equations of the
NCA approximation and the expression that gives the current
through a system described by the model are presented in
section 4. In section 5 we describe how the STAM for a
particular set of quantum critical points, can be mapped into
an OAM plus a free spin, and derive useful results from this
mapping. In particular a formula is derived, which allows one
to calculate the spectral densities of the STAM in terms of those
of the OAM. We also show that the NCA equations satisfy
exact results derived from this mapping. Section 6 contains
the numerical results obtained with the NCA, and comparison
with experiment and previous works. Section 7 is a summary
and discussion.

2. The model

2.1. The mixed valence impurity

As originally derived for Tm impurities in a cubic crystal
field [37], the STAM hybridizes the lowest states of the 4f12

configuration, a �1 singlet and �4 triplet, with a doublet (�6

or �7) of the 4f13 configuration. The fact that only two
neighboring configurations are allowed implies that infinite
Coulomb repulsion U is assumed. This assumption is taken
in all models discussed in this paper. Using the notation |SM〉,
where S is the spin and M its projection, we represent the states
of the 4f12 configuration, as |00〉 for the singlet and |1M〉,
(M = −1, 0 or 1) for the triplet. The doublet is denoted by
its spin-1/2 projection |σ 〉.

The Hamiltonian can be written in the form

H = Es |00〉〈00| + Et

∑

M

|1M〉〈1M| + Ed

∑

σ

|σ 〉〈σ |
+ Hband + Hmix, (1)

where Hband is a band of extended states:

Hband =
∑

kσ

εkc†
kσ ckσ , (2)

and Hmix is the hybridization. In the following we assume k
independent matrix elements. Extensions to a more general
case are straightforward within the NCA [44, 45]. We can also
assume full rotational symmetry and then the form of Hmix

is determined by Clebsch–Gordan coefficients [2]. Calling
c†
σ = ∑

k c†
kσ /

√
N one obtains

Hmix = {[Vs |↑〉〈00| − Vt(|↑〉〈10| + √
2|↓〉〈1 − 1|)]c↑

+ [Vs |↓〉〈00| + Vt(|↓〉〈10| + √
2|↑〉〈11|)]c↓ + h.c.}.

(3)

Performing an electron–hole transformation h↑ = −c†
↓, h↓ =

c†
↑, Hmix takes the equivalent form

Hmix = {Vs(h
†
↑|↓〉 − h†

↓|↑〉)〈00| + Vt [(h†
↑|↓〉 + h†

↓|↑〉)〈10|
+ √

2(h†
↑|↑〉〈11| + h†

↓|↓〉〈1 − 1|)] + h.c.}, (4)

which is more transparent: the states |σ 〉 may be thought as
having one particle (4f hole in the Tm case) and when another
particle comes from the band, a localized two-particle singlet
|00〉 or a component of the triplet |1M〉 is formed. In any case,
it is clear that the above transformation allows us to treat with
the same Hamiltonian the cases in which the configuration with
the doublet has either one more particle or one less particle than
the other one.

We can assume that Vs > 0 changing, if necessary, the
phase of |00〉. Similarly we assume Vt > 0. For Et →
+∞, the model reduces to the OAM. For Es → +∞, the
model describes valence fluctuations between two magnetic
configurations [2, 32]. In both limits, for constant density of
conduction states, the model is exactly solvable (by the Bethe
ansatz) and the ground state is a singlet (doublet) in the first
(second) case [2, 35, 36]. Thus, the model has a quantum
phase transition as a function of Es − Et . The position of
the transition depends on the other parameters of the model,
leading to a quantum critical surface that can be determined
by calculating the magnetic susceptibility at T → 0 using
the numerical renormalization group (NRG) [37]. However,
as shown in section 5, if Vt = Vs , the transition takes place
exactly at Es − Et = 0, independently of the value of Ed . In
addition, along this quantum critical line3, the model can be
mapped into an OAM plus a free spin 1/2.

2.2. The multilevel dot

In a dot hybridized with two leads, the triplet is formed from
the singlet with lowest energy by promoting an electron from
the highest occupied level, which we denote as a, to the highest
unoccupied level b. One can restrict to these two levels. The
states of these two levels are hybridized with the bands of the
two leads, left (ν = L) and right (ν = R) described by

Hband =
∑

νkσ

ενkh†
νkσ hνkσ , (5)

3 In the space of free parameters of the model, at zero temperature and
equilibrium, the set of all quantum critical points forms a two-dimensional
surface. Fixing either Vs = Vt or Es = Et defines the same quantum critical
line on this surface.
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through the following term in the Hamiltonian:

Hmix =
∑

νσ

[(V a
ν a†

σ + V b
ν b†

σ )hνσ + h.c.], (6)

where h†
νσ = ∑

k h†
νkσ /

√
N . We assume V a

L V b
R = V b

L V a
R , so

that only one conduction channel

hσ =
(

∑

ν

V η
ν hνσ

)
/[(V η

L )2 + (V η
R )2]1/2 (η = a or b)

(7)
hybridizes with the dot states. In general, the orthogonal
linear combination of hνσ also plays a role and ‘screens’
the remaining doublet ground state when the localized triplet
is well below the singlet, leading to a singlet ground
state [29, 30]. However, as mentioned in section 1, the
characteristic energy scale involved in this second screening
T ∗ might be exponentially small. As argued before [30], this
is likely the case of previous experiments. As our results
will show (section 6), the one-channel case also describes the
recent transport measurements in C60 QDs [39]: the theory in
the more general two-channel case [29, 30, 46] predicts that
the zero bias conductance G(T ) should decrease at very low
temperatures and dI/dV should also decrease for the smallest
applied bias voltages V in contrast to the observations. This
indicates that T ∗ is smaller than the smallest temperature in
the experiments.

Assuming that the difference between the energies of the
levels b and a is larger than the hybridization terms, one can
retain only the lowest doublet and neglect the singlets that
contain at least one particle in the state b. Then, performing
an electron–hole transformation if necessary, the relevant low
energy states of the dot are

|σ 〉 = a†
σ |0〉, |00〉 = a†

↑a†
↓|0〉, |11〉 = b†

↑a†
↑|0〉,

|10〉 = 1√
2
(b†

↑a†
↓ + b†

↓a†
↑)|0〉, |1 − 1〉 = b†

↓a†
↓|0〉.

(8)
The triplet states should be kept because the ferromagnetic
exchange may render them the lowest of the configuration with
an even number of particles [23, 26–28, 39] (see figure 1).
Restricting the action of the fermion operators to these six
states one has

a†
↑ = |00〉〈↓|, b†

↑ = |11〉〈↑| + |10〉〈↓|/√2,

a†
↓ = −|00〉〈↑|, b†

↓ = |1 − 1〉〈↓| + |10〉〈↑|/√2.
(9)

Replacing equations (7) and (9) in equation (6) one obtains
equation (4) with

Vs = [(V a
L )2 + (V a

R )2]1/2,

Vt = [(V b
L )2 + (V b

R )2]1/2/
√

2.
(10)

Therefore, at equilibrium, the model takes the same form
as equation (1). The values of Es , Et and Ed are easily
determined from the on-site energies and correlations at the
QD, including Hund exchange [31]. The nonequilibrium case
is discussed in sections 4.2 and 4.

3. The integer valence limits

When | min(Es, Et) − Ed | 
 max(Vs, Vt ), the model is at
the integer valence (or ‘Kondo’) limit and a Hamiltonian of the
exchange type can be derived, using a canonical transformation
which eliminates Hmix from the Hamiltonian and originates a
term quadratic in Hmix [7, 47]. Two cases can be distinguished,
depending on which configuration is favored.

3.1. Odd number of electrons

For min(Es, Et ) − Ed 
 max(Vs, Vt ), the doublet is favored.
In this case, the canonical transformation is a particular case of
that considered in [21] for a Cr trimer on Au(111) (a doublet
ground state with virtual charge fluctuations to singlets and
triplets). Using equations (1), (2) and (4), one obtains

Hodd =
∑

kσ

−εkh†
kσ hkσ + (Fs − 3Ft )h

†
σ hσ + J s · S,

J = 4(Fs − Ft ), Fη = V 2
η

2(Eη − Ed)
,

(11)

where s = ∑
αβ h†

ασ αβhβ/2 = ∑
αβ c†

ασ αβcβ/2 is the spin of
the conduction electrons at the QD and similarly S is the spin
of the doublet. This is a Kondo model with potential scattering
(second term of equations (11)). It is known from NRG that,
when J is positive, it is a marginally relevant perturbation (it
grows with renormalization to J → +∞) leading to a singlet
ground state [37, 48]. Instead for negative J , the exchange
term is marginally irrelevant (J → 0) and the ground state is
a doublet. Therefore, there is a quantum phase transition for
J = 0, or Fs = Ft in terms of the parameters of the original
model.

Moreover, at both sides of the transition, the system is a
Fermi liquid, but the phase shift at the Fermi energy is δ = π/2
for J > 0, but δ = 0 for J < 0. For the one-channel case that
we are considering, this means that the zero bias conductance
is maximum (vanishing) for J > 0 (J < 0) [29]. Therefore,
there is a jump in the conductance at the quantum phase
transition. This is in agreement with recent NRG results and
an analysis of a generalized Friedel–Luttinger sum rule [31].

Note that, for Vs = Vt , the transition is exactly at Es = Et .
It has been found by NRG that this statement is valid for any
occupation of the dot and not only for integer occupation [37].
An analytic argument which supports this numerical result is
given in section 5.2.

3.2. Even number of electrons

For Ed − min(Es, Et) 
 max(Vs, Vt), if in addition |Es −
Et | 
 max(Vs, Vt ), the highest lying levels between the
singlet and the triplet can be neglected, and the resulting
effective model reduces to one of the cases considered in [2].
In particular, if the triplet is the lowest in energy one has
the underscreened Kondo model with singular Fermi liquid
behavior [25].

The effective model Heven is reached when Es lies near Et .
In the following we assume that both energies lie well below
Ed . In order to obtain a more transparent form of Heven we
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introduce two fictitious spins 1/2, S1 and S2, to represent the
states of the configuration with even number of particles, in
terms of the states of these two spins |σ1σ2〉 as follows:

|00〉 = (|↑↓〉 − |↓↑〉)/√2, |11〉 = |↑↑〉,
|10〉 = (|↑↓〉 + |↓↑〉)/√2, |1 − 1〉 = |↓↓〉.

(12)

The resulting effective Hamiltonian is

Heven =
∑

kσ

εkc†
kσ ckσ + 2V 2

t

Ed − Et
s · (S1 + S2)

+ (Et − Es)(S1 · S2) + Vs Vt

(
1

Ed − Es
+ 1

Ed − Et

)

× s · (S1 − S2) − V 2
t

Ed − Et
n0

+
(

V 2
t

Ed − Et
− V 2

s

Ed − Es

)
n0nS, (13)

where n0 = c†
σ cσ and nS = |00〉〈00| = 1/4 − S1 · S2.

For Vs = 0 and Et well below Es , Heven reduces to the
spin-1 underscreened Kondo model plus potential scattering.
This model has a doublet ground state and singular Fermi
liquid behavior [25]. A Hamiltonian with the first four terms
(the most relevant ones) was studied by NRG and found to
have a singlet–doublet quantum phase transition which is in
general continuous of the Kosterlitz–Thouless type [49], as
the original model [37]. The transition is first order only in
the particular case in which the fourth term (proportional to
S1 − S2) vanishes [49]. This implies either Vs = 0 or Vt = 0
in our model. Note that, for Vs = Vt and Es = Et , the spin S2

decouples and the spin S1 has a usual Kondo interaction with
the band and is therefore screened. An analysis of the strong
coupling fixed point for the STAM [37] and for Heven without
the terms proportional to n0 [49] indicates that a generic feature
of the phase with a doublet ground state (and also the quantum
critical point) is a free spin 1/2 and a Kondo screened spin 1/2
at low temperatures. This implies a phase shift δ = π/2 and
maximum conductance G, as in the phase with a singlet ground
state when the configuration with an odd number of particles is
favored (see section 3.1).

Starting at the transition and decreasing Es , the remaining
spin is also screened in a second stage and the ground state is
a singlet. The full Fermi liquid behavior is restored, and one
expects δ = G = 0. Another way of thinking on this is that the
screening of the remaining spin leads to a Fano antiresonance
with a characteristic energy scale given by the second stage
Kondo effect (see section 5.2).

Note that the jump in the conductance at the transition
takes place in spite of the fact that the transition is continuous
(as discussed above) and not first order. The impurity
contribution to the magnetic susceptibility also jumps at zero
temperature at the transition [37, 49].

These results for the conductance agree with direct
calculations using NRG [31, 40]

4. The non-crossing approximation (NCA)

4.1. Representation of the Hamiltonian with slave particles

The NCA has been used to study the OAM out of
equilibrium [51]. To extend this formalism to the STAM,
we introduce auxiliary bosons, one for the singlet state (s)
and three for the triplets (tM , M = −1, 0, 1), and auxiliary
fermions ( fσ ) for the doublet, in analogy to the SU (N) ×
SU(M) generalization of the Anderson model [52, 53]. In
terms of the auxiliary operators, the Hamiltonian takes the form

H = Ess†s + Et

∑

M

t†
MtM + Ed

∑

σ

f †
σ fσ +

∑

νkσ

ενk c†
νkσ cνkσ

+
∑

νkσ

[(V s
ν d†

sσ + V t
ν d†

tσ )cνkσ + h.c.], (14)

(ν = L or R), where E f = Ed and

d†
sσ = f †

σ s, d†
t↑ = −( f †

↑ t0 + √
2 f †

↓ t−1)/
√

3,

d†
t↓ = ( f †

↓ t0 + √
2 f †

↑ t1)/
√

3,
(15)

with the constraint

s†s +
∑

M

t†
M tM +

∑

σ

f †
σ fσ = 1. (16)

The factor 1/
√

3 in equations (15) was chosen to give
a more symmetric form for the NCA equations, in particular
near the quantum critical line for which the system is exactly
solvable (see section 5.4). Comparing with equations (9), one
can realize that d†

s↑ = −a↓, d†
s↓ = a↑, d†

t↑ = −√
2/3b↓

and d†
t↓ = √

2/3b↑. The representation of equation (14)
was chosen in such a way that if the triplet can be neglected
(because either Et → +∞ or V t

L = V t
R = 0), the model

reduces to the OAM.
As in section 2.2, the mixing part of equation (14) can be

put in the form of equation (3) with Vs = [(V s
L )2 + (V s

R)2]1/2

and Vt = [(V t
L)2 + (V t

R)2]1/2/
√

3.

4.2. Equation for the current

For the calculation of the current, we consider a multilevel
QD with at most six relevant states of the Hilbert space, as
described in section 2.2 (see equations (8)). For the case of
proportionate couplings of the relevant two levels (V a

L V b
R =

V b
L V a

R as we are assuming), Meir and Wingreen [50] provided
an expression for the current in a nonequilibrium situation
(equation (9) of [50]), which is given by a trace of ΓGr, where
Γ is given in terms of V η

ν and Gr is a matrix of retarded Green’s
functions. In our case, Γ and Gr are 4 × 4 matrices in spin and
level (a or b) indices. It is easy to see that the product ΓGr is
the same (as it should be) in the representation of slave particles
used above (equations (15)), in which the index η refers to s
and t instead of a and b (the normalization factors in Γ and Gr

cancel).
Γ is diagonal in the spin index. Within the NCA, the

expectation values entering the Green’s functions decouple
into fermion and boson parts [51] and both are diagonal as a
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consequence of SU(2) invariance of the Hamiltonian. This
means that Gr is diagonal in level index. This allows us to
simplify the resulting expression, which takes the form

I = Aπe

h

∫
dω

∑

η

�ηρ
η

d (ω)[ fL(ω) − fR(ω)], (17)

where ρ
η

d (ω) = − Im Gr
dησ (ω)/π is the spectral density of

d†
ησ :

�η = �
η

R + �
η

L, with �η
ν = 2π

∑

k

|V η
ν |2δ(ω − εk) (18)

assumed independent of ω within a bandwidth D and zero
elsewhere:

A = 4�
η

R�
η

L/(�
η

R + �
η

L)2 � 1 (19)

(independent of η) is a parameter that characterizes the
asymmetry between left and right leads, and fν(ω) is the Fermi
function with the chemical potential μν of the corresponding
lead.

4.3. Spectral densities and Green’s functions

The spectral densities of the operators d†
ησ defined by

equations (15) for given spin, ρs
d(ω) and ρt

d(ω), are determined
by convolutions from those of the auxiliary particles ρλ(ω)

with the lesser Green’s functions G<
λ (ω) (λ = s, t , or f ) as

follows:

ρ
η

d (ω) = 1

Z

∫
dω′(G<

η (ω′)ρ f (ω
′ +ω)+G<

f (ω
′ +ω)ρη(ω

′)),

(20)

Z =
∫

dω(G<
s (ω) + 2G<

f (ω) + 3G<
t (ω)), (21)

where we define G<
t (ω) as the Fourier transform of

〈t†
M (0)tM(t)〉 (the result is independent of M because of SU(2)

symmetry) and similarly for G<
s (ω) and G<

f (ω). The spectral
densities of the auxiliary particles are given by the imaginary
part of the corresponding retarded Green’s function as usual:
ρλ(ω) = − Im Gr

λ(ω)/π . In turn, these Green’s functions

Gr
λ(ω) = 1

ω − Eλ − �r
λ(ω)

, (22)

are given in terms of retarded self-energies �r
λ(ω), which

as in the case of the OAM [51], should be determined self-
consistently. The imaginary parts are given by the following
set of integral equations:

Im �r
s(ω) = −

∫
dω′ �sρ f (ω

′) f̃ (ω′ − ω),

Im �r
t (ω) = − 1

3

∫
dω′ �tρ f (ω

′) f̃ (ω′ − ω),

Im �r
f (ω) = − 1

2

∫
dω′ [�sρs(ω

′) + �tρt (ω
′)]h̃(ω − ω′),

(23)
where

f̃ (ω) = [�η

L fL(ω) + �
η

R fR(ω)]/�η,

h̃(ω) = [�η

L(1 − fL(ω)) + �
η

R(1 − fR(ω))]/�η,
(24)

and �η
ν , �η (η = s or t) are given by equations (18). The real

part of the self-energies are obtained using Kramers–Kronig
relations:

Re �r
λ(ω) = 1

π
P

∫
dω′ Im �r

λ(ω
′)

ω′ − ω
. (25)

Once the retarded self-energies are obtained solving the
above system of equations, the lesser Green’s functions come
from the solution of the following integral equations:

G<
d (ω) = |GR

d (ω)|2�<
d (ω), (26)

�<
s (ω) = 1

π

∫
dω′ �s G<

f (ω
′)h̃(ω′ − ω),

�<
t (ω) = 1

3π

∫
dω′ �t G<

f (ω
′)h̃(ω′ − ω),

�<
f (ω) = 1

2π

∫
dω′ [�s G<

s (ω′) + �t G<
t (ω′)] f̃ (ω − ω′).

(27)

4.4. Numerical details

In the numerical procedure to solve the NCA equations, we
have used a set of self-adjusting meshes (rather than the
fixed one used in [53]) to describe the spectral densities and
lesser Green’s functions of the auxiliary particles: we have
evaluated ρλ(ω) and G<

λ (ω) in the corresponding logarithmic
array of discrete frequencies ωλ, built in each iteration in
order to have a larger density of points near the corresponding
peaks or singularities of these functions. The procedure
guarantees the resolution of the sets of integral equations (23)
and (27) to a high degree of accuracy. To calculate the
spectral densities, ρs

d(ω) and ρt
d(ω), we have used two different

logarithmic meshes centered at the peaks of the functions
entering equation (20). This scheme of numerical resolution
allows us to obtain the conductance at both sides of the
transition, within equilibrium and nonequilibrium, and for all
values of the parameters considered.

The logarithmic discretization is similar to that used in
NRG calculations, where only one mesh centered at the Fermi
energy μL = μR and with an arbitrarily large number of
frequencies near this energy is used [54].

5. The exactly solvable case

For Vs = Vt and Es = Et , the model given by
equations (1)–(3) or (4) has additional symmetries and is
exactly solvable [37]. It has been shown numerically that these
equations define a quantum critical line (a point for each value
of Ed/Vs) (see footnote 3) that separates regions of singlet
and double ground states [37]. In this section we provide
simple analytical arguments to demonstrate these results, map
the corresponding spectral densities and show that the NCA is
consistent with these results.
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5.1. The STAM on the quantum critical line

In analogy to equations (12), let us consider a (probably ficti-
tious) system, like the two-level one considered in section 2.2,
but in which the relevant singlet is |00〉 = (1/

√
2)(b†

↑a†
↓ −

b†
↓a†

↑)|0〉 (instead of a†
↑a†

↓|0〉, see equations (8)), and with the
mixing term

Hmix =
∑

νσ

[V b
ν b†

σ hνσ + h.c.], (28)

which does not involve the a†
σ and aσ operators. Clearly, the

resulting model (equation (31) with Et = Es) is the OAM with
infinite Coulomb repulsion U for the level b (which is exactly
solvable by Bethe ansatz [2]), while level a within the relevant
Hilbert subspace (equations (8) with |00〉 replaced as above)
reduces to a decoupled spin 1/2: |σ 〉 = a†

σ |0〉. Within this
subspace

b†
↑ = |11〉〈↑| + (|10〉〈↓| + |00〉〈↓|)/√2,

b†
↓ = |1 − 1〉〈↓| + (|10〉〈↑| − |00〉〈↑|)/√2.

(29)

Replacing these equations in equation (28) one obtains
equation (4) with

Vs = Vt = [(V b
L )2 + (V b

R )2]1/2/
√

2. (30)

This shows the equivalence of the STAM for Vs = Vt and
Es = Et with an OAM plus a free doublet.

5.2. Effect of singlet–triplet splitting

Proceeding as above, it is easy to see that for Vs = Vt =
VOAM/

√
2, but arbitrary Es and Et , the STAM given by

equations (1), (2) and (4), except for an irrelevant constant, is
mapped onto

H ′ =
∑

kσ

−εkh†
kσ hkσ + (Et − Ed)

∑

σ

b†
σ bσ

+
∑

σ

[VOAMb†
σ hσ + h.c.] + Ub†

↑b↑b†
↓b↓

+ (Et − Es)(Sa · Sb − 1/4), (31)

where U → +∞, Sa is the spin operator of the spin 1/2 which
is free for Et = Es , and similarly Sb = ∑

αβ b†
ασ αβbβ/2.

For Et = Es , clearly Sb is screened as usual in the OAM
and the ground state is a doublet which is the direct product of
a Fermi liquid singlet times the spin state |σ 〉. If the state b is
hybridized with two conducting leads (as above), the physics of
the OAM determines that the conductance G = G0 sin2 δ, with
G0 = 2e2 A/h and δ = π〈∑σ b†

σ bσ 〉/2 [55]. In particular
when the total number of particles 〈∑σ b†

σ bσ 〉+1 = 2, one has
maximum conductance, in agreement with the result discussed
in section 3.2.

When the last term of equation (31) is added, one can
think of Sb as representing the spin of itinerant electrons in
an effective heavy mass Fermi liquid at low energies. In
fact, comparison of a mean-field slave-boson treatment with
NRG calculations [56] show that this picture is qualitatively

correct4 for 〈∑σ b†
σ bσ 〉 + 1 � 2. Then, as discussed in

section 3, from the physics of the ensuing effective Kondo
model [48, 56], when Et < Es (ferromagnetic coupling)
the exchange interaction renormalizes to zero and the ground
state continues to be a doublet, while for Et > Es a second
screening takes place and the ground state is a singlet. This
results agrees with previous NRG results [37] and confirms that
Vs = Vt and Es = Et correspond to the quantum critical line.

If the OAM for Et = Es is in the Kondo regime
(〈∑σ b†

σ bσ 〉 � 1), one expects that addition of a positive
exchange (Et > Es) induces a Fano–Kondo antiresonance,
depressing the conductance at low temperatures [55, 56], while
nothing dramatic happens for Et < Es . This again agrees with
the results of section 3.

While as discussed above, the ground state is a doublet
for Et < Es , we remind the reader that for realistic two-level
systems at low enough temperatures (T < T ∗, see section 2.2)
a second screening channel should become active, leading to
a screening of the remaining doublet and a decrease in the
conductance [29, 30, 46].

5.3. Mapping of the spectral densities

Since the OAM out of equilibrium has been studied
before [43, 51, 57–59]5, results for the conductance of the
OAM can be extended to the STAM on the quantum critical
line if one knows how to express the spectral densities ρs

d(ω)

and ρt
d(ω) of the operators d†

sσ , d†
tσ of the STAM (see

equations (15)), which enter the equation for the current (17),
in terms of the spectral density ρb(ω) of the operator b†

σ

of the OAM (included in equation (31) for Et = Es).
These densities are proportional to the imaginary part of
the corresponding retarded Green’s functions. For example,
ρb(ω) = − Im Gr

b(ω), where Gr
b(ω) is the Fourier transform

of Gr
b(t) = −iθ(t)〈bσ (t)b†

σ + b†
σ bσ (t)〉, where θ(t) is the

step function. The operators d†
sσ and d†

tσ of the STAM can be
expressed in terms of those of the OAM using equations (15)
and the mapping of operators explained in section 5.1. For
example

ds↓ = 1√
2
(b†

↑a†
↓ − b†

↓a†
↑)a↓,

dt↓ = 1√
6
[2b†

↑a†
↑a↑ + (b†

↑a†
↓ + b†

↓a†
↑)a↓].

(32)

Replacing this in expectation values like 〈dη↓(t)d†
η↓〉, one

obtains expectation values involving six fermion operators.
Four of them correspond to a†

σ and aσ operators, which have
no dynamics (are time-independent) and are decoupled from
the remaining b†

σ and bσ operators. Evaluating the expectation
values involving a†

σ and aσ operators, using spin conservation,
〈a†

↑a↑a†
↓a↓〉 = 0, and assuming the paramagnetic phase (in

particular 〈a†
σ aσ 〉 = 1/2), we obtain after some algebra

〈dη↓(t)d†
η↓〉 = 1

2 〈b†
σ bσ (−t)〉, (33)

4 Note that the slave-boson mean-field theory is an approximation for the low
energy physics and is therefore inadequate to calculate the Luttinger integral
IL considered in [31], which involves high energies.
5 The correct coefficient of −(eV/�̃)2 is 1 + [(2 + 3A)ũ2 − 3A]/4.
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independently of η = s or t . Proceeding in the same way for
the remaining expectation values we finally obtain

ρs
d(ω) = ρt

d(ω) = 1
2ρb(−ω), (34)

which relates the spectral densities of the STAM to that of the
OAM on the quantum critical line.

5.4. Mapping of the NCA equations

It is interesting to note that the NCA approach for the STAM
described in section 4, and the corresponding one for the OAM,
although they seem to be quite different at first glance, can be
related and satisfy equations (34). The NCA for the OAM [51]
makes use of an auxiliary boson b̃ and auxiliary fermions f̃σ ,
describing the electron operator as bσ = b̃† f̃σ . In analogy
to equations (18), the coupling to the right and left leads are
described by coupling constants �R and �L. We define the total
coupling of the OAM as � = �R + �L. The mapping between
both models described above for Vs = Vt and Es = Et

implies that �s
ν = 1/2�ν , and �t

ν = 3/2�ν . Therefore,
�t = 3�s = 3/2�. As a consequence of these relations,
the equations for the auxiliary bosons s and those for tM have
the same form (see equations (23) and (27)). Moreover the
resulting equations for the self-energies take the same form as
those of the auxiliary fermions f̃σ of the OAM (equation (23)
of [51]), but with fν(ω) replaced by 1 − fν(ω). Similarly, the
self-energies of the auxiliary fermions fσ of the STAM take
the same form as those of the auxiliary boson b̃ of the OAM,
with the same change as above in the Fermi functions fν . This
implies the following relations for the auxiliary particles:

ρs(ω) = ρt (ω) = ρ f̃ (−ω), ρ f (ω) = ρb̃(−ω),

G<
s (ω) = G<

t (ω) = G<

f̃
(−ω), G<

f (ω) = G<

b̃
(−ω).

(35)
The density ρb(ω) of the real fermion bσ of the OAM is given
by a convolution (equation (21) of [51]) similar to that defining
ρs

d(ω) and ρt
d(ω) (equation (20)) with the replacements

indicated by equations (35), but with the difference that Z
in the denominator is replaced by ZOAM = ∫

dω(G<

b̃
(ω) +

2G<

f̃
(ω)). Using equations (21) and (35), it is easy to see that

Z = 2ZOAM. This leads to equations (34) for the relation
between spectral densities. We have checked it numerically by
an independent solution of the NCA equations for both models.

6. Numerical results

For the numerical solution of the NCA equations, we take Vs =
Vt , so that, independently of Ed , the quantum transition occurs
at the exactly solvable case Es = Et described above. We take
�, the coupling of the OAM involved in the mapping described
in the previous section, as the unit of energy. Therefore
�s = 1/2�, and �t = 3/2�. We take the bandwidth of the
conduction bands D = 10�. At equilibrium μL = μR and the
properties of the model depend on Eη + μL − Ed (η = s or
t) and not separately on the individual parameters. Therefore,
without loss of generality, we take Ed = μL = μR = 0. Out of
equilibrium, unless otherwise stated, we assume �

η

R = �
η

L =

Figure 2. Spectral densities as a function of frequency for
T = 5 × 10−4, Et = Es = −2, and three bias voltages V .

�η/2 and μL +μR = 0 (as expected for equal couplings to the
left and right leads).

The choice Vs = Vt leaves four free parameters:
temperature T , bias voltage V , which determines the
difference in chemical potentials μL − μR = eV , Et/� (or
Es/�) which controls the valence and can be modified by
a gate voltage, and finally (Es − Et)/�, which controls the
distance to the quantum critical line (see footnote 3). This
parameter has also been controlled experimentally by Roch
et al [39]. A great advantage of taking Vs = Vt is that we
know exactly where the quantum transition is, while for other
ratios Vs/Vt , the position of the transition has to be determined
numerically [37]. This is very time consuming within the NCA
because it is required to solve the structure of the spectral
densities at low temperatures many times near the transition.

In this paper, we restrict our study to Es, Et < Ed .
This means that the configuration with an even number of
particles is favored. This situation corresponds to the most
novel experimental results, in particular those of Roch et al
for the conductance through C60 QDs near the quantum phase
transition [39]. In the following and for the sake of brevity we
call the ‘singlet side’ of the transition the region of parameters
with a singlet ground state (Es < Et in our case with Vs = Vt ),
and (to be consistent with Roch et al) we denote by the ‘triplet
side’ the region Es > Et although as explained above, the spin
1 is partially screened and the ground state is a doublet.

6.1. The spectral densities

As shown in section 4.2, the current is proportional to the
integral of the following weighted average spectral density:

ρav
d (ω) =

∑
η �ηρ

η

d (ω)

�s + �t
. (36)

However, as we will show, a study of the singlet ρs
d(ω)

and triplet ρt
d(ω) parts of this average density contributes

significantly to the understanding of the numerical results. As
expected from section 5.4, within our numerical accuracy, the
three densities, shown in figure 2, coincide with the specular
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Figure 3. Spectral densities as a function of frequency for V = 0, Et = −2, Es = −2.03 and several temperatures. Left: ρs
d(ω) and ρ t

d(ω),
middle: weighted average (see equation (36)), right: ρs

d(ω) at low temperatures.

Figure 4. Spectral densities ρs
d(ω) and ρ t

d(ω) as a function of frequency for T = 0.001�, Et = −2, Es = −2.03 and several bias voltages.

image of that of the OAM times a factor 1/2 (figure 5 of [51]).
At equilibrium, they show a peak at the Fermi level. The
width of this peak allows us to define a Kondo temperature
TK. Under an applied bias voltage, the peak splits in two near
the corresponding μν as in the OAM [51].

How do the spectral densities evolve as one moves from
the quantum critical line? For V = 0, this is shown in figure 3
on the singlet side of the transition. For small temperatures,
decreasing Es from the quantum critical line (Et = Es), ρs

d(ω)

displaces to positive frequencies, while ρt
d(ω) decreases and

displaces its weight to negative frequencies. As a consequence,
a pseudogap opens in ρav

d (ω). A similar pseudogap was found
before in studies of two-level systems and interpreted as the
low temperature part of a two-stage Kondo effect [40], along
the lines discussed in sections 3.2 and 5.2. At very low
temperatures (below 0.005�), a spurious spike appears at the
Fermi energy in ρs

d(ω). This is due to a known shortcoming
of the NCA that takes place when the ground state for zero
hybridization is non-degenerate, for example under an applied

magnetic field [51]. However, as argued in [51] it is interesting
to note that this shortcoming does not affect the calculation
of thermodynamic properties under a finite applied magnetic
field [60].

The densities under an applied voltage are shown in
figure 4. The main effect of the bias voltage V is to lead
to a decrease of the singlet part of the density ρs

d(ω) and a
simultaneous increase of the triplet part ρt

d(ω) for positive
frequencies. In addition, near the average Fermi level (μL +
μR)/2, as V is increased, the pseudogap in the average density
of states ρav

d (ω) first closes, leading roughly to a single broader
peak near (μL + μR)/2, and then, for larger V , this peak in
ρav

d (ω) splits in two near μL and μR as in figure 2 and the
ordinary Anderson model [51]. The right panel of figure 4
shows ρav

d (ω) with more detail at low energies and including
another small voltage. This fine structure suggests that, as
the gate voltage is applied, the peaks of ρ

η

d (ω) split in two,
shifted ±eV/2. Then, naturally, the pseudogap closes when
eV reaches the difference between the position of the peaks,
which is near Et − Es .

9
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Figure 5. Spectral densities ρs
d(ω) and ρ t

d(ω) as a function of
frequency for V = 0, Et = −2, Es = −1.97 and several
temperatures.

The spurious peak at the Fermi level disappears already
for very small bias voltages.

The spectral densities on the triplet side of the transition
(Es > Et ) at equilibrium are shown in figure 5. In this case,
the ground state for Vs = Vt = 0 is degenerate and no spurious
peaks appear. Therefore our results are more robust. In contrast
to the previous case, ρt

d(ω) remains peaked at the Fermi energy
for low temperatures. This is a consequence of the partial
Kondo effect, by which the spin 1 at the dot forms a ground
state doublet with the conduction electrons of both leads, as is
known from the exact solution of the model when the singlet
can be neglected [2, 35, 36] or the spin-1 underscreened Kondo
model [24, 25].

The singlet part of the density ρs
d(ω) displaces to negative

frequencies in this case. Therefore a pseudogap also appears in
ρav

d (ω), but at finite frequencies. Note that at high temperatures
both densities are similar except for a constant factor and the
difference in the structure of ρs

d(ω) and ρt
d(ω) develops at a

characteristic temperature of the order of a fraction of |Es−Et |.
The effect of an applied bias voltage on these densities is

shown in figure 6. In this case, the singlet part of the density
increases with voltage at positive frequencies, in contrast to
the case shown above (figure 4) for the singlet side of the
transition. However, the behavior of ρav

d (ω) near the average
Fermi energy is similar as in the above case. The peaks at
equilibrium first broaden and merge into one for small bias
voltage V , and for larger V this peak splits in two centered
at energies near μL and μR.

6.2. The equilibrium conductance

The conductance G(T, V ) = dI/dV for V = 0 on the
singlet side of the transition is shown in figure 7 together with
the contributions of the singlet (�sρs

d(ω) in equation (17))
and triplet (�tρt

d(ω)) part of the spectral densities. Our
result agree with previous ones using NRG [31, 40] and with
experiment [39]. In particular, the increase and decrease of
G(T ) from its maximum value are logarithmic to a good

Figure 6. Spectral densities ρs
d(ω) and ρ t

d(ω) as a function of
frequency T = 0.001�, Et = −2, Es = −1.97 and several bias
voltages.

Figure 7. Zero bias conductance G(T, 0) in units of G0 = 2e2 A/h
as a function of temperature (full line) and contributions from the
singlet (dashed–dotted line) and triplet (dashed line) for
Et = −3, Es = −3.1. Straight dotted lines are guides to the eyes.

degree of accuracy. At very low temperatures (below 0.01�

in figure 7), our result for G(T ) increases slightly as the
temperature is lowered, while one expects a saturation at a
value given by the generalized Friedel–Luttinger sum rule [31]
(see below). This low temperature increase is due to the
spurious peak that develops in ρs

d(ω) as a consequence of the
NCA, as explained in section 6.1.

According to the generalized Friedel–Luttinger sum
rule [31], the conductance G(T, V ) at zero temperature and
without applied bias voltage on the singlet side of the transition
is given by

Gs(0, 0) = G0 sin2
(π

2
nodd

)
, (37)

where G0 = 2e2 A/h and nodd = 〈∑σ |σ 〉〈σ |〉 = 1 −
〈|00〉〈00| + ∑

M |1M〉〈1M|〉 is the total occupation of the
configuration with odd number of particles. For the parameters
of figure 7, we obtain nodd = 0.10 ≈ 0 and then one
expects a low value of Gs(00)/G0. In fact, inserting this
value of nodd in equation (37) one obtains Gs(0, 0)/G0 =
0.0245. Our corresponding result is near 0.020 (see figure 7).
Although it is known that the NCA does not satisfy Fermi
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Figure 8. Zero bias conductance G(T ) as a function of temperature
for Et = −3 and several values of ε = Es − Et (increasing from top
to bottom). The circles correspond to equation (38).

liquid relationships, the deviation (near 0.005) is not too large
for a magnitude that is, in general, of the order of 1. For the
particular case of figure 7, the deviation is near 10% of the
maximum value shown in the figure.

The evolution of the zero bias conductance as the system
moves from the quantum critical line Et = Es to the triplet side
of the transition Et < Es is shown in figure 8. At the transition,
the conductance is the same as that of an OAM [51], with
parameters given by the equivalence explained in sections 5.1
and 5.3. In particular, we find that the conductance is very well
described by the empirical curve derived by fitting results of
the NRG for a spin 1/2:

G E (T ) = G(0)
[
1 + (21/s − 1)(T/TK)2

]s , (38)

with s = 0.22. As Et is lowered, removal of degeneracies
in the ground state leads to a decrease in the conductance
at intermediate temperatures. At zero temperature, the
generalized Friedel–Luttinger sum rule [31], for the triplet side
of the transition gives

Gt(0, 0) = G0 cos2
(π

2
nodd

)
. (39)

Since the valence is only slightly increased by a small decrease
in Et , one expects that G(0, 0) ≈ G0 in good agreement with
our results. The temperatures reached in our NCA approach
for the larger values of ε = Es − Et used in figure 8 are not
low enough to reach these high values of the conductance.

A distinct feature of G(T, 0) on the triplet side of
the transition is the developing of a bump or a plateau at
intermediate temperatures. This is more clearly displayed
in figure 9 where the scale in the conductance has been
expanded. This structure has not been noticed in previous NRG
calculations of the conductance in two-level systems [31, 40].
This might be due to insufficient calculations in the appropriate
range of temperatures (which correspond to rather small values
of the conductance). Another possible reason is the loss of
resolution of NRG for high energy features. This shortcoming
of NRG is clearly manifest [61, 62] in systems of two

Figure 9. Zero bias conductance G(T ) as a function of temperature
(full line) and contributions from the singlet (dashed–double-dotted
line) and triplet (dashed line) for Et = −3, Es = −2.9.

QDs in which the Kondo resonance is split in two [61–63].
The separation of the spectral density ρav

d (ω) which enters
the equation for the current (17) into singlet and triplet
components, as shown in figure 9, shows that the bump is due
to charge excitation involving the singlet component (which is
peaked at an energy Es − Et , see figure 3) broadened by the
temperature.

This provides an interpretation of the corresponding
transport experiments through C60 QDs (figure 4(b) of [39]).
The comparison suggests that, in general, the temperature
in the experiment could not be lowered significantly after
the plateau has been completed, and that the conductance
should continue to increase for decreasing temperatures. Roch
et al [39] suggested a different physical picture, fitting the
plateau with the empirical equation (38) with a smaller value
of G0 and speculated that the further increase in G(T, 0) at
smaller temperatures might be due to the opening of another
parallel transport mode. The effect of a second screening is
expected to lead to a decrease of the conductance on general
physical grounds [29]. Our results also indicate that, while
equation (38) is a good curve fitting for the conductance of the
OAM, it does not work in the STAM for general values of the
parameters. An exception is, of course, the exactly solvable
quantum critical line in which the STAM is mapped onto an
OAM plus a free spin [37], as described in section 5.

6.3. Conductance as a function of bias voltage

In figure 10 we show the differential conductance G(T, V ) =
dI/dV as a function of bias voltage for small temperatures
and for three values of ε = Es − Et . One of them (ε = 0)
corresponds to the quantum critical transition and for the other
two, the system is either on the singlet (ε < 0) or triplet (ε > 0)
side of the transition. The remarkable change of behavior
at the transition is evident. As expected from the results of
section 6.1, the opening of a gap in ρav

d (ω) near the Fermi
energy on the singlet side of the transition, leads to a dip in
G(0, V ) at low V . The width of this dip is of the order of |ε|.
At the bottom of the dip, the small value of the conductance
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Figure 10. Differential conductance as a function of bias voltage V
for T = 0.01, Et = −3 and several values of Es .

G(0, 0) should be given by the generalized Friedel–Luttinger
sum rule equation (37), while the NCA results have a deviation
of nearly 20% of this value, as discussed in section 6.1. For
larger values of −ε, the dip becomes wider, and the result is
similar to the conductance observed in finite chains of an even
number of Mn atoms on CuN [64].

On the triplet side of the transition, a structure with a
central peak at zero bias and two lateral maxima is obtained.
The three peaks are more marked at smaller temperatures,
as we have shown in figure 4 of [42]. This structure also
agrees qualitatively with the experimental findings in C60

QDs (figure 4(a) of [39]). Actually the observed structure is
asymmetric, in contrast to the results shown in figure 10. This
is a consequence of our assumption of a symmetric voltage
drop. In fact the couplings �

η

L and �
η

R are usually very
different for C60 molecules [65] and this leads to an asymmetric
voltage drop. A reasonable assumption is that the voltage drop
from one lead to the molecule is inversely proportional to the
coupling to the corresponding lead [58] (see footnote 5). In
our calculation, the ratio between couplings enters through the
asymmetry parameter A that controls the magnitude of the
current (see section 4.2 and equations (17) and (19)) and the
functions (24) that enter the self-consistency equations (see
section 4). A calculation for an asymmetric voltage drop is
shown in figure 11. We have taken μL = 4eV/5, μR = −eV/5
and �

η

R/�
η

L = 4 (assumed independent of η = s or t), keeping
the same sums �

η

R + �
η

L as before. As expected, now the
height of the lateral peaks is different, with the left peak as
the second most intense after the central one, in agreement
with experiment. The nonmonotonic behavior of G(0, V )

can again be qualitatively understood from the structure of
the spectral densities discussed in section 6.1. Assuming as
a first approximation that ρ

η

d (ω) does not depend on voltage,
it is clear from equation (17) that the conductance at zero
temperature G(0, V ) would be proportional to the average
of ρav

d (ω) in a window of ω of width eV around the Fermi
energy. Since ρav

d (ω) is peaked at the Fermi energy (as a
consequence of the peak in the triplet part ρt

d(ω)), G(0, V )

decreases with applied bias voltage V for small V . However,

Figure 11. Differential conductance as a function of bias voltage for
Et = −3, Es = −2.9 and several temperatures.

Figure 12. Full line: differential conductance as a function of bias
voltage for Et = −2, Es = −1.97 and T = 0.001�. Dashed line:
corresponding result taking ρav

d (ω) at V = 0.

when the window of width eV reaches the peak in the singlet
contribution ρs

d(ω), the average of the total spectral density
ρav

d (ω) is expected to increase and this leads to a peak in
G(0, V ) at finite bias voltages. This explains the result shown
in figure 11 at small temperatures.

For other parameters, which would correspond to another
experimental situation, in particular nearer to the transition,
it might happen that ρs

d(ω) broadens as a consequence of
the applied bias voltage and the structure with three peaks
is absent. This is the case for the parameters of figure 12,
where, instead of three peaks, we obtain two small shoulders
at positive and negative voltages, as shown by the full line in
figure 12. The three-peak structure is, however, the general
behavior expected for a system well inside the Kondo regime
when Es − Et is larger than the width of the peaks in the
spectral densities.

Due to the difficulties in the calculation of nonequilibrium
properties, an approximation usually made consists in taking
the density of states calculated in equilibrium, and assume
that it is constant with applied bias voltage. This approach,
valid for non-interacting systems has been used for example
in combination with first-principles calculations, to calculate
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the current through single molecules [66]. Some results for
the transport through two-level systems were obtained also
in this approximation [31], using a formula equivalent to
equation (17), but with the average density calculated for
V = 0.

From the result presented in section 6.1 for finite V , it is
clear that this procedure is not valid in general. An example is
shown by the dashed line in figure 12. When the equilibrium
densities are taken instead of the nonequilibrium ones, the
effects of broadening of the spectral densities caused by the
applied bias voltage are missed, and as a consequence, the
presence of two side peaks (although broad) is still predicted
for the conductance, in contrast to the full nonequilibrium
calculation. Naturally, the splitting of the Kondo resonance
at higher bias voltages is also missed if frozen densities are
assumed (see section 6.1 and [51]).

7. Summary and discussion

We have studied the singlet–triplet Anderson model (STAM)
in which a configuration with a singlet and a triplet is mixed
with another one with a doublet, via the hybridization with
a conduction band. This is the simplest model that describes
the conductance through a multilevel quantum dot, hybridized
with two leads in an effective one-channel fashion. As found
earlier in intermediate valence systems [37], the model has
a quantum phase transition that separates a region with a
singlet ground state from another one with a doublet ground
state. This transition has been studied recently in transport
measurements through C60 quantum dots [39]. Our results
provide an explanation of the observed behavior at both sides
of the transition. In particular, in the region of parameters
in which the ground state is a doublet, we obtain a zero
bias conductance with a plateau at intermediate temperatures,
which agrees with experiment. The three-peak structure
observed in the nonequilibrium conductance as a function of
applied bias voltage is also explained by the model. The
separation of the electronic spectral density at the dot into
two parts, which correspond to excitations involving either the
singlet or the triplet, leads to a more transparent understanding
of the underlying physics. In particular, the above-mentioned
plateau and the observed peak at finite bias voltages are due to
singlet excitations.

We have also studied several limits of the model, which
allow us to shed light on the expected behavior of the
conductance at very low temperatures and bias voltages
(G(0, 0)), as the integer valence limits of the STAM, and
an special quantum critical line in which the model can be
mapped into an ordinary Anderson model plus a free spin
1/2. For Vt = Vs , the latter model with additional exchange
interaction H ′ (equation (31)) is equivalent to the STAM.
An analysis of H ′ and the integer valence limits show that
the value of G(0, 0) is consistent with a generalized Friedel–
Luttinger sum rule derived recently [31], and which takes into
account that the system is a singular Fermi liquid when the
ground state is a doublet, in a similar way as the underscreened
Kondo model [25]. As is clear from equations (37) and (39)
this means that an abrupt conductance change takes place at

the transition [31]. Although the NCA cannot reach zero
temperature, our numerical results are consistent with this
result. On the quantum critical line, the conductance is
smoothly connected to that of the phase with a doublet ground
state.

Our NCA approach has the advantage over NRG that it
can be rather easily extended to the nonequilibrium regime.
When the configuration with an even number of particles is
the favored one (as we have assumed here), it works very well
on the quantum critical line and one expects it to be accurate
enough on the ‘triplet’ side of the transition (where the ground
state is a doublet). However, on the ‘singlet’ side, a spurious
peak in the singlet part of the spectral density develops at very
small temperatures and bias voltages, rendering our results
quantitatively inaccurate for these parameters. We have found
that similar difficulties arise when the configuration with an
odd number of particles is favored, but now on the triplet side
of the transition, including the quantum critical line. In fact,
the ordinary Anderson model that comes out of the mapping
described in section 5.1 now has an occupation near zero and
develops a spurious peak at low temperatures and bias voltages.

While our results on the triplet side of the transition
agree with the experimental results of Roch et al [39], and
the interpretation of them is rather simple, we cannot totally
rule out the possibility that some of them are due to the
NCA approximation, and that the physical explanation of the
observed phenomena is different. For example, the plateau
of the conductance on the triplet side of the transition has
not been reported in previous NRG calculations [31, 40]. We
believe that this might be due to the lack of resolution of the
NRG at finite frequencies [61, 62] This might be improved
by averaging over different shifted logarithmic discretizations
(z averaging) [67, 68] and using recent developments (the full
density matrix NRG) [69, 70]. In any case, taking into account
the difficulties to extend the technique out of equilibrium [71],
it seems that a combination of both techniques (numerical
renormalization group and non-crossing approximation) might
be suitable to obtain further progress.
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[68] Žitko R and Pruschke T 2009 Phys. Rev. B 79 085106
[69] Peters R, Pruschke T and Anders F B 2006 Phys. Rev. B

74 245114
[70] Weichselbaum A and von Delft J 2007 Phys. Rev. Lett.

99 076402
[71] Anders F B 2008 Phys. Rev. Lett. 101 066804

14

http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1103/PhysRevLett.88.077205
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.87.256804
http://dx.doi.org/10.1103/PhysRevLett.85.2557
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1088/0953-8984/17/13/005
http://dx.doi.org/10.1103/PhysRevLett.93.156601
http://dx.doi.org/10.1103/PhysRevB.69.115404
http://dx.doi.org/10.1103/PhysRevB.71.035417
http://dx.doi.org/10.1103/PhysRevLett.96.096804
http://dx.doi.org/10.1038/nature00790
http://dx.doi.org/10.1103/PhysRevLett.84.2485
http://dx.doi.org/10.1088/0953-8984/19/17/176210
http://dx.doi.org/10.1103/PhysRevB.72.014430
http://dx.doi.org/10.1038/35015509
http://dx.doi.org/10.1103/PhysRevLett.84.5824
http://dx.doi.org/10.1103/PhysRevB.67.113309
http://dx.doi.org/10.1103/PhysRevLett.87.216601
http://dx.doi.org/10.1103/PhysRevB.75.245329
http://dx.doi.org/10.1103/PhysRevB.80.125117
http://dx.doi.org/10.1103/PhysRevLett.47.274
http://dx.doi.org/10.1016/0304-8853(84)90090-8
http://dx.doi.org/10.1016/0304-8853(85)90053-8
http://dx.doi.org/10.1103/PhysRevB.31.6143
http://dx.doi.org/10.1016/0304-8853(87)90574-9
http://dx.doi.org/10.1103/PhysRevB.52.7987
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1103/PhysRevLett.88.016803
http://dx.doi.org/10.1038/nphys340
http://dx.doi.org/10.1103/PhysRevB.80.035308
http://dx.doi.org/10.1103/PhysRevB.74.155125
http://dx.doi.org/10.1103/PhysRevB.75.195129
http://dx.doi.org/10.1103/PhysRevB.79.075410
http://dx.doi.org/10.1103/PhysRevB.69.235301
http://dx.doi.org/10.1016/0038-1098(92)90080-S
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevB.65.140405
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevLett.71.1613
http://dx.doi.org/10.1103/PhysRevB.58.5649
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevB.65.165305
http://dx.doi.org/10.1103/PhysRevB.71.075305
http://dx.doi.org/10.1088/0953-8984/17/35/008
http://dx.doi.org/10.1103/PhysRevB.78.235112
http://dx.doi.org/10.1103/PhysRevB.78.115120
http://dx.doi.org/10.1103/PhysRevLett.99.209701
http://dx.doi.org/10.1103/PhysRevB.76.165112
http://dx.doi.org/10.1103/PhysRevLett.97.096603
http://dx.doi.org/10.1126/science.1125398
http://dx.doi.org/10.1103/PhysRevB.79.165413
http://dx.doi.org/10.1103/PhysRevLett.88.256803
http://dx.doi.org/10.1103/PhysRevB.41.9403
http://dx.doi.org/10.1103/PhysRevB.79.085106
http://dx.doi.org/10.1103/PhysRevB.74.245114
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.101.066804

	1. Introduction
	2. The model
	2.1. The mixed valence impurity
	2.2. The multilevel dot

	3. The integer valence limits
	3.1. Odd number of electrons
	3.2. Even number of electrons

	4. The non-crossing approximation (NCA)
	4.1. Representation of the Hamiltonian with slave particles
	4.2. Equation for the current
	4.3. Spectral densities and Green's functions
	4.4. Numerical details

	5. The exactly solvable case
	5.1. The STAM on the quantum critical line
	5.2. Effect of singlet--triplet splitting
	5.3. Mapping of the spectral densities
	5.4. Mapping of the NCA equations

	6. Numerical results
	6.1. The spectral densities
	6.2. The equilibrium conductance
	6.3. Conductance as a function of bias voltage

	7. Summary and discussion
	Acknowledgments
	References

